extension | φ:Q→Aut N | d | ρ | Label | ID |
(C22xC42).1C2 = C4xC2.C42 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 128 | | (C2^2xC4^2).1C2 | 128,164 |
(C22xC42).2C2 = C24.624C23 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 128 | | (C2^2xC4^2).2C2 | 128,166 |
(C22xC42).3C2 = C24.626C23 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 128 | | (C2^2xC4^2).3C2 | 128,168 |
(C22xC42).4C2 = C2xC22.7C42 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 128 | | (C2^2xC4^2).4C2 | 128,459 |
(C22xC42).5C2 = C4xC22:C8 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 64 | | (C2^2xC4^2).5C2 | 128,480 |
(C22xC42).6C2 = C42.378D4 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 64 | | (C2^2xC4^2).6C2 | 128,481 |
(C22xC42).7C2 = C23.32M4(2) | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 64 | | (C2^2xC4^2).7C2 | 128,549 |
(C22xC42).8C2 = C2xC42:4C4 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 128 | | (C2^2xC4^2).8C2 | 128,999 |
(C22xC42).9C2 = C2xC4xC4:C4 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 128 | | (C2^2xC4^2).9C2 | 128,1001 |
(C22xC42).10C2 = C2xC42:5C4 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 128 | | (C2^2xC4^2).10C2 | 128,1014 |
(C22xC42).11C2 = C2xC23.63C23 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 128 | | (C2^2xC4^2).11C2 | 128,1020 |
(C22xC42).12C2 = C22xC8:C4 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 128 | | (C2^2xC4^2).12C2 | 128,1602 |
(C22xC42).13C2 = C24.625C23 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 128 | | (C2^2xC4^2).13C2 | 128,167 |
(C22xC42).14C2 = C23.28C42 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 64 | | (C2^2xC4^2).14C2 | 128,460 |
(C22xC42).15C2 = C2xC42:6C4 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 32 | | (C2^2xC4^2).15C2 | 128,464 |
(C22xC42).16C2 = C42.425D4 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 64 | | (C2^2xC4^2).16C2 | 128,529 |
(C22xC42).17C2 = C4xC42:C2 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 64 | | (C2^2xC4^2).17C2 | 128,1002 |
(C22xC42).18C2 = C2xC42:8C4 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 128 | | (C2^2xC4^2).18C2 | 128,1013 |
(C22xC42).19C2 = C23.165C24 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 64 | | (C2^2xC4^2).19C2 | 128,1015 |
(C22xC42).20C2 = C2xC42:9C4 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 128 | | (C2^2xC4^2).20C2 | 128,1016 |
(C22xC42).21C2 = C23.167C24 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 64 | | (C2^2xC4^2).21C2 | 128,1017 |
(C22xC42).22C2 = C2xC23.65C23 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 128 | | (C2^2xC4^2).22C2 | 128,1023 |
(C22xC42).23C2 = C2xC23.67C23 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 128 | | (C2^2xC4^2).23C2 | 128,1026 |
(C22xC42).24C2 = C23.178C24 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 64 | | (C2^2xC4^2).24C2 | 128,1028 |
(C22xC42).25C2 = C4xC22:Q8 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 64 | | (C2^2xC4^2).25C2 | 128,1034 |
(C22xC42).26C2 = C42.439D4 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 64 | | (C2^2xC4^2).26C2 | 128,1583 |
(C22xC42).27C2 = C24.599C23 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 64 | | (C2^2xC4^2).27C2 | 128,1587 |
(C22xC42).28C2 = C42.440D4 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 64 | | (C2^2xC4^2).28C2 | 128,1589 |
(C22xC42).29C2 = C2xC4xM4(2) | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 64 | | (C2^2xC4^2).29C2 | 128,1603 |
(C22xC42).30C2 = C22xC4:C8 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 128 | | (C2^2xC4^2).30C2 | 128,1634 |
(C22xC42).31C2 = C2xC4:M4(2) | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 64 | | (C2^2xC4^2).31C2 | 128,1635 |
(C22xC42).32C2 = C2xC42.12C4 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 64 | | (C2^2xC4^2).32C2 | 128,1649 |
(C22xC42).33C2 = C2xC42.6C4 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 64 | | (C2^2xC4^2).33C2 | 128,1650 |
(C22xC42).34C2 = C42.677C23 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 32 | | (C2^2xC4^2).34C2 | 128,1652 |
(C22xC42).35C2 = Q8xC22xC4 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 128 | | (C2^2xC4^2).35C2 | 128,2155 |
(C22xC42).36C2 = C22xC42.C2 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 128 | | (C2^2xC4^2).36C2 | 128,2169 |
(C22xC42).37C2 = C22xC4:Q8 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 128 | | (C2^2xC4^2).37C2 | 128,2173 |
(C22xC42).38C2 = C2xC23.37C23 | φ: C2/C1 → C2 ⊆ Aut C22xC42 | 64 | | (C2^2xC4^2).38C2 | 128,2175 |